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The authors study convergcnce of certain exponential sums that interpol ale to

functions which are the Laplace-Stieltjes transform of a signed or complex
distribution. They prove uniform convergence in unbounded sectors of the rigH half
plane and establish rates of convergence in certain cases, For the special case where

the function is completely monotone. the results generalize and improve theorem, of
D, W K~lmmler II Ma/h, Al1a! App!. 57 (1977), 560·5701,

I. INTRODIXTION

In 151. Kammler investigated interpolation by exponential sums to
functions/(I) completely monotone on 10. C!J I. that is. functions/(l) having
a representation

.·l

/(1) I e Iv duCy).
'il

I E 10. OJ I.

where u(xl is real valued. monotone increasing and lim,. j a(xl =
a( OJ) < OJ. We can assume a(O) = O. In Theorem 3 of 151. Kammler proved
uniform convergence of the interpolating sums in 10. OJ I for quite general
choices of interpolation points.

The question arises: To what extent can the positivity of the distribution
da(x) be relaxed? In this note. the authors show that da(x) may be replaced
by a signed or complex distribution d(J(x). provided the exponents of the
exponential sums are chosen in a certain way, and provided one interpolates
at a smaller number of points.

A second question arises: Do the exponential sums converge in the right
half plane. in view of the analyticity of Laplace transforms in a half plane?
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In fact. it follows from the uniform boundedness of the exponential sums ill

Theorem 3 in 151 that they converge uniformly in compact subsets of till:

right half plane. Here we prove uniform convergence in unbounded sectors,
under more general conditions. Further. for certain choices of thc inter
polation points. we establish rates of convergence,

2. NOTAl 10"

DEFINITION 2,1. A function IJ(x): 10. r:D I' IS said tu be of bounded
variation in 10. 00 I if

(i) I](x) is of bounded variation In each compact subinterval 01

10. (0).

(ii) IJ(x) is right continuous in 10. ex ).

(iii) IJ(O)=O.

(iv) Il( (0)= lim, . , If(x) is a finite complex numher.

We use /l' (x). If' (x). fi' (x).f)' C\) \0 denote. respective!\'. the f'~al and
imaginary upper and lower variations of fJ(x). so that arc monotor,c
increasing and right continuous in 10. CD) and

IJ(x)== U!"'(x)/l' (x); ii/!"(x) /i' (xl:. \' ( 10.00

We assume the four functions are normalized Lo have the value zero at x O.
The total variation function of If(x) is /f!(x) /i' ' (x) + f;" (\,) I;i (x)·

fJi (x). xI'-:: 10.001.
Throughout a(x) will denote a function of bounded variation ill 10. :X;

that is also real valued and monotone increasing there.

DEFINITIO"i 2.2. A function /J(x) of bounded variatIon in 10. oc I is said
to be absolutely continuous with respect to a(x) if there is a (complex
valued) function dfJ/da(x), defined for almost all x in 10. oc I such that

fJ(x)
.\ dl]
1--- (u) da(ul.

Co da . . xElo,ocl·

except possibly at discontinuities of a(x). and such thai

.ij

df!
(11) da(u) <YJ.

da
(2, \ }
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DEFINITION 2.3. We shall denote the Laplace~Stieltjes transform by .I _

\lore precisely.

.of

"./ Ida 1(1) = I C 1.\ da(x).
- 0

Re(l) ~ 0.

is a function completely monotone in [0.001. while if /J(x) IS of bounded
variation in 10. 00 I. then we shall say that

.I IdfJl(I) = I (' t.\ d!J(x).
-II

is a function completely bounded in [0.00 [.

Re(l) ~ 0.

DFFINITION 2.4. For /7 = I. 2. 3.... let positive integers 111(/7) and inter

polation points °~ 1"1 < I", < ... < I""",,) < 00 be given. We shall say :I"ii ".!

is a uniqueness set if there exist numbers T, r,> 0. k =- 1. 2. 3... such thar

(i) the intervals (T, r,. f, + r,). k = 1. 2. 3..... are all disjoint:

(ii) if 1,=liminf"., I(T,-r,.T,+r,)'I;I"I.I",· ·/'li"""i. k--
I. 2. 3.... then

" I,(T, - r,)/11 + (r, -I r,)": = 00. (2.2)
, 1

Here denotes the cardinality of a set. so that I, is an asymptotic lower
bound for the number of interpolation points in (T, ~ r,. T, + r,). When some

l,=' 00. the series in (2.2) is interpreted as 00.

!n Theorem 3 of [5[. Kammler used a restricted form of the above
uniqueness condition: he assumed all r, = ° and all I, = 1. in effect. The
motivation for the term "uniqueness set" will become clearer in
Corollary 3.2. For the moment we note:

LEMMA 2.5. Lei f(z) be bounded and analYlic i/7 1z: Re(z) > Of Irilh

.~erocs Z" k = 1. 2. 3.... repealed according 10 multiplicily. If

" Re(zd/(I +lz,I')= 00
, 1

IhC/7 /(z) == °in Iz: Re(z) > 0:.
Pro(j( See Hille 13. Theorem 19.2.61. I



188 SIDI AND LUBINSKY

It is easy to see that the following choices of interpolation points all yield
uniqueness sets:

=j. j= I. 2.... 11: II I. 2.

ltll t(i 1)/11. j 1.2... 11:11 1.2... :

iU 1)/(11 log II).

I. 2.. II: 1/= 1. 2....

1.2... 11:1/ j l
i. L ....

The last two sets of interpolation points do not satisfy the conditions I

Theorem 3 of 151.
Given 0 fI

"
< 7[. the sector with vertex at U. angle 2f1". that IS s\mmelm'

with respect to the positive real axis is

while given I:;' O. we let

Finally. given a function g(x) defined on !O. I I. we set

gi, supjg(.\J: \ flO. I

and

g
.1 ' ! /

(I i g(xW dX)
>11 '

0<. p' x.

whenever this is defined and finite.

3. UNIFORM CONVC:RGEMT

We first establish a convergence result for Laplace-SlIeltjes transfoflw,
which is possibly of independent interest.

THEOREM 3.1. Suppose !J(x). !J1l(X). n == 1. 2.... are complex !'Glued
functions of bounded variation ill [0. 00 I. Denote their total !'Griation
functions by 1!JI(x). 1!JIIl(x). II = 1. 2.... Assume that

lim !J1l(x) = !J(x):
n 'J.

lim ,!J,/(x) = ,Ili(x)
n __-4'.(

(3.IA)
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for almost all x E 10, 00), and

lim IfJln( 00) = If3l( ex)).
n ~ '}

189

(3.1 B)

Let f(t) = ./[df3l(t) and/,,(t) = ./ Idf3"I(t), Re(t))°and n = L 2.... Then

lim j;,(t) =/(t).
n'I

Re(t)) O. (3.2 )

and the convergence is uniform in / (00 ) for any 0 <°0 < n/2. if onzr (3.1 A)
holds/or almost all x E [0,00). and sup" 1131,,(00) < 00. then

lim !,,(t) = f(t)·
11 .J

Re(t) > O.

and the convergence is uniform in / (°0 , 1:) for any °< 00 < n/2 and r: > O.

Proof The convergence (3.2) is an immediate consequence of Helly's
Convergence Theorem (Freud [2, p. 561). of (3.1 B). and of the uniform
boundedness ofe Ix for Re(t))O and x)O. Assuming (3.1A.B) we shall
prove uniform convergence in / (eo) for fixed 0 < eo < n/2. Let II > O.
Firstly. we can choose 0 < S < l' < 00 such that (3.1 A) holds for x = S. l'
and

.'
I d(lf3l(x) + If3:,,(x)) < '1/2.
-0

If d(lf3l(x) +If3l,,(x)) < '1/2,
. !

n > N.

n > N.

(3.3A)

(3.3B)

Here N is a positive integer and we have used (3.1A, B). Then we see by
(3.3A. B).

I.e e IX dfJ(x) -- .e e IX df3,,(x) !

+ I.e e IX df3(x)-.C e IX dfJ,,(x) I < II·

Re(t)) O. (3.4)

Next for t E / (00 ) and x E IS. 1'1. we see

lie 1\ 1<. sec(Oo) Re(l) e Rl'(f) x

<. sec(Oo) max~ue /Ix: U > Or
=sec(Oo)(ex) I.
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Then integrating by parts, we have, for all t E .1 (B(I)'

I ( e 1\ dp(x) -- '" e IX d/llI(x) I1·,.\ _os I

I
1 1e 1\(jJ(x)

./

/)n(xm~ ~.' + I Ie I\(j)(x)-lill\x)) dx
·s

~ IP(T) -- Pn(T)! +- IP(S) finIS)

,/

+- sec(Bo) I (ex) II/I(x) P,,(x) dx.
·s

(3.5 )

The right member of (3.5) is independent of I and converges to () as 11 • CD

by Lebesgue's Dominated Convergence Theorem and our assumptions on 5'
and T. Then by (3.4) and (3.5), we obtain for all large enough 11, and for all

t E / (Bo)'

1\ d(jJ(x) - IJII(x)) i
I

This completes the first part of the theorem.

Remark. When (3.IA) holds for almost all xE 10, cx:) but (3.18) does
not. then there is no longer necessarily uniform convergence in / (°0 ) nor
even convergence for Re(t) = O. as shown by the following example: Let

dp,,(x) be a Dirac delta of unit mass at x = 11, 11 = L 2.... and IJ(x) c=c O.
xE 10, 001. Thenfn(t)=Yld{J"I(l) e "t and./;,(I/n)=e I and/,,(O)= 1.
11 = L 2.." while f(t) == 0 so /,,(1) does not converge uniformly in / (00) and
f,,(O) does not converge to flO).

Finally, suppose (3.IA) holds with sUPnIP'n(oo)<--cx:. and fIX
o< Bo < 1[/2 and t; > O. We write

I/ (t) - J;,( t) ~(+JI' Ie t\d(jJ(x) Pn(x))

and use (3.3A) to estimate 0'" as before. For the second integral we use an
integration by parts to deduce

I'Ii e Ix d(fi(x) - PII(X)) ~ IP(S) PII(S)! + life 'XIIII(x) /In(x)ldx.
I· s ·s
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Further, we use the estimate

191

Ite !Xi(sec(eo)Re(t)e Rc(ilx/2e Re(tJ X'~

and the result folJows as before. I

The folJowing corollary generalizes and strengthens Theorem 3 in
Kammler 151.

COROLLARY 3.2. Let J(I)= Yldal(t), Re(t)~O. For n l, L .. let 2n
interpolation points 0 (t nl < tnl < ... < t ll • 2n be given and assume jf";},,.J is
a uniqueness set. Let J,,(I) be the real exponential sum involving n exponents
such that J/1(t/1;) =J(t/1;),j 1. 2... 2n: 11 = 1. 2.... Theil

lim /,,(t) =/(1).
n ~;t

Re(t) ~ 0,

and the convergence is uniform in the unbounded sector / (eo) .lilr any

o< elJ < n/2.

Proof In Lemmas 4 and 5 in 141, Kammler shows that /,,(t) =
./ Ida" I(t), f1 1. 2, 3... , where a,,(x) is of bounded variation in 10, 00 I and
is. further, real valued and monotone increasing with

a,,( (0) ( a( (0). 11 I, 2.... (3.6 )

(His notation is different.) By Helly's Selection Theorem (Freud 12. p. 56 I).
we can find a sequence of integers. ; . and a monotone increasing function
rex), also of bounded variation in 10.00 I, such that

for almost all x E 10, 00 ).

Then by Theorem 3.1,

lim /,,(1) = ./Idy I(t) = g(l)
".-+:.1

rIE. I

uniformly in. / (00 , f:), (3.7)

any [; > 0,0 < eo < 71:/2. Now let {rd and {rd be as in Definition 2.4. Fix a
positive integer k. By hypothesis J(t)- /,,(1) has at least Ik zeroes in
(rk - rk , T k + rk ) for large 11. Then by Hurwitz' Theorem, f(t) -- g(t) has at
least Ik zeroes, counting multiplicity. in jz: iz Tkl (rkf, in view of (3.7).
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These zeroes have real parts ?Tk - r k , and moduli ;;;Jk -+ r k . Thus if ZI' z •...

are the zeroes of f(t) g(l),

\' Re(zk) , \' Ik( Tk rkJ
..__._--~ CfJ

k I I +I::k ~~ k I I i (r/ f 1'1. ).'

by (2.2). By Lemma 2.5.

fld(u-;')IU)=fU) -g(t) 0. Re(l) ~ u.

and by Theorem 19.4.2 in Hille 131, u(x) ~ ;'(x). Since the same argumelll

applies to all subsequences of i I. 2, 3... ~ we have shown

lim u,Jx) = u(x).
11 • I

almost all x f. 10, CfJ l.

Finally. for almost all x> 0. (3.6) yields

u( CfJ)? lim sup ul/( CfJ)? lim inf u) CfJ).;: lim u,,(x) u(x),
11 ,./ II •. ( /I • r

and letting x • 00, we obtain

lin1 ul/( CfJ) == u( CfJ).
II' J

Thus (3.1 A, B) hold for /J = u. /11/ U 1/' II = I. 2.... and the result follows

from Theorem 3.1. I

4. COMPLETELY BOUNDFD FUNCTIONS

First we establish the existence of exponential sums involVing Ii exponents.

which interpolate to completely bounded functions ./ 'I dfJ I at II points. and
for which the sum of the moduli of the "weights" is bounded independent of

n. It is interesting to note that both the exponents and interpolation points do

not depend on the distribution d/3(x).

THEOREM 4. I. Let fJ(x) be of bounded wriatioll in 10, CfJ I alld
absolute(l' continuous with respect to a(x). Let

f(t) = I!dfJl(I)· Re(t)? O.
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Let n be a positive integer and let nonnegative t"l and positive h" be given.
Let

al1d

j= 1. 2... n. (4.1 )

t'n(a) = I e 21 nl \ du(x).
.' (Iogal/h l !

aE 10.11. (4.2 )

Let °<ani <an2 < ... <an" < I be the abscissas in the Gauss-Jacobi
quadrature of order 11 for dy,,(o) and let

,U IlJ = (log 0n)/h ll •

Then there is an exponential sum

j= I. 2... n. (4.3)

Salis/ring
/,,(1 )

"\ .. H' ,e lHnj
_ 11.1

i 1

(4.4 )

alld

j= 1.2... 11. (4.5)

Proqj: Firstly

(4.6)

/U,,) = I e
,'0

111i,,\.\ dIJ(x)

. dP I
1 \ (x) e'nl\ . e "niX da(x)

da \

.1

= I oj lH(o)dy,,(o).
.(1

where a e Ii,,\ and

dP
H(a) = - (x) e'nl\

da

i = L 2... n. (4.7)

dlJ
= da (-(log o)/hJ 0 I,,, lin. a E /0, 1/.
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and where we have used (4.2). Note that

. I .

I 1 H(a)I' dY,.(a) = I
·0 . (I

d/I
-- (x) df1(x) < 00.
du

(4.HJ

Now as 1',,(0') is monotone increasing. there are positive weights A"i and
abscissas an; such that

\' An;P(an) == i Pta) dY,,(a)
II ·'0

whenever Pta) is a polynomial of degree at most 211 - I. Further. )',,(0)

generates a sequence of orthonormal polynomials and H(a) has an (formal)
orthonormal series expansion in these polynomials in view of (4.8). Let 1(0)

denote the partial sum of the first II terms of this expansion. so that 1(0) is a
polynomial of degree at most 11 I. Let

H'flj :::::. ;~lljs(afl.i) e1i/J!rl}:~

Then if ;;,(t) is given by (4.4).

j= 1.2... II.

. - \'.1,,(1,,;) - _
A 1

== \' ;,,,,1(0,,,)0;,,1
, I

(by (4.3))
.1

=, I s(a) 0' 1 d{',,(a)
II

(by (4.9) and as 1(0') a; 1 has degree ~211 2)

.1

= I H(a) a' 1 di',,(a)
,()

(as H(a) -- s(a) is orthogonal to l, o. 0' ... a" I)

j = l, 2... II.

by (4.7), so establishing (4.5). Next we prove (4.6). By the Cauchy-Schwarz
inequality

\' 11\',,;1 ~
i I

" II\'. a 2'111/ 11 ",
~ An; II; \
I 1

, " '/ i\ \' , .
1

- I'''i s(a ni ) . I'

i I

.1

I Is(aW dY,,(a)
"(I

1 ,,' ~

(4.10)
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by (4.3). (4.9) and as Is(aW = s(a)s(a) is a polynomial of degree at most
2n - 2. Next. the function g(a) = a 2t",/h" has all its even order derivatives
non-negative in (0. 1]. By an inequality of Shohat (Freud [2. Lemma 1.5.
p.92I).

n .1

'\' Ie ·a 2(n,!h",;:: I a ;(",/h" d'r'n(a) = a(oo)_ n.l tlJ ~

i I ·n

by (4.2). Further, by Bessel's inequality (Hille [3. pp. 328-329 J)•

• 1 .1

I Is(aW dYn(a) ~ I IH(aW dY,,(a).
·n "n

Finally, (4.8), (4.10). (4.11). and (4.12) yield (4.6). I

(4.1 I)

(4.12)

Note that having fixed the exponents I-lnk' the existence and uniqueness of
fn(t) satisfying (4.4) and (4.5) follow from the fact that ie (Ii,,' ..... e (U""f is a
Chebyshev system. However. the essential feature of the above theorem is
that the bound in (4.6) is independent of n and the interpolation points. The
above result is connected to the theory of "product integration" rules (Sloan
and Smith 18 J) but we shall not expand on this.

THEOREM 4.2. For each positive integer n. let non-negatil'e t" I and
positive hn be given and define t"j' j = 1,2... n. by (4.1). Assume It''i is a
uniqueness set. Further. let f(t).!,,(t) be as in Theorem 4.1 so that (4.5)
holds. n = I. 2.... Then

lim !',(t) =f(t).
n-+j

Re(t) > O.

and the convergence is uniform in the unbounded sector / (en. c) for Q/I.!·

o < en < 7[/2 and f: > O.

Proof Let fJ,,(x) = .Lu",sx W"j' x E 10. 00 [. n= I. 2.... so that
j;,(t) = fldPnl(t), n= I. 2.... Let p;," (x), fJ;; (x).P:,· (x).p;, (x) denote.
respectively. the real and imaginary upper and lower variations of /J',,(x). so
that. for example.

xE IO.ool,n= 1,2....
«'lj~,X

Re(u'ni) >0

as in Definition 2.1. Then if IPln(x) is the total variation function of P,,(x), we
see

" "
PI,,(oo)= ~ (lRe(w"j)I+IIm(w"jJl)~v2'\' IW"il~V2r.
iii I
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n = I. 2. 3... by (4.6). By Helly's Selection Theorem. we can extract a subse
quence of integers , I ' and monotone increasing functions ;-'! (x). / (x).

/ i (x). yi (x) which are, respectively. the limits of (3~! (x). (3;, (x). II:, IX).

(3;, (x) for almost all x E 10.(0) as n-> 00. n E, I . This defines a function
y(x). and its total variation function )'1 as in Definition 2.1. Let
g(t) = /Idyl(l). Re(l)? O. As

lim (31/(x) = y(x).
n·-t 'f

!IF I

lim I/Ji,Ji.") = 1,'(,\)
fI"'f

II !

for almost all x E 10. 00). Theorem 3.1 shows

lim '/;,(1) = g(l).
" • 'f

!lEI

Re(t) > O.

the convergence being uniform in / ((Jo' I:) for any 0 < 80 < 7[/2 and I: > O.
As in Corollary 3.2. we deduce g(l) =/(1) and /,(x) = IJ(x). and the proof is
completed as in Corollary 3.2. I

Theorems 4.1 and 4.2 show that if f(l) is completely bounded in 10. ex; I.
then it is the limit in (0. 00 ) of a sequence of exponential sums

./'(t)- \' '\' e Ii,u l • \'1"\' :/1'n - _ ~ nj . _ 'nil ~ •
; I i J

n = 1.2.... (4.131

Conversely. if /(1): 10.00)' is the limit of a sequence of sums .011
satisfying (4.13). then it is easily seen uSil1g Helly"s Theorem that f(t) is
completely bounded in 10.00 I.

Nira Dyn of Tel Avi,v University has informed the authors loral
communication) that provided d(3(x) is real. it is possible to obtain
convergent exponential interpolation for other choices of exponents and
interpolation points.

5. RATES OF CONVERGENCE

When the interpolation points are equidistant and scllist\,.'ertain
asymptotic assumptions, one can establish rates of convergence of ,J r) to

/(t) using standard theorems on the degree of approximation by polynomials.
It is also possible to establish convergence rates using complex analysis
methods from the theory of rational approximation. However. for simplicity.
we omit the latter. Our analysis is based upon:

LEMVlA 5.1. Let (3(x). ,'(x) be of bounded l'ariation in 10.001 and 11'1
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/(t) = :I[dfJl(t), g(t) = :/Idyj(t), Re(t);? O. Let a, h > a and n be a positil'c
integer. Let ti = a + (j - I) h,j = L 2... n. Assume f(tJ = g(tJ j = L 2... n.
Then

(i) !/(t)-g(l)!< (lfJl(oo) + li'](oo))ila ll al/Ii-P(a)llf' Re(l);?a,

whenever P(a) is a po(vnomial 0/ degree at most n - I:

(ii) 1/(t)-g(l)!«!fJl(oo)+ly!(oo))!t-a!h Illa ll
alii I_Q(a) l'

Re(l) > a,

whenez:er Q(a) is a po(vnomial of degrce at most n -- 2.

Proof

.;j-

/(1) - g(t) = I (e Ii\f ai/ii e ax d(jJ-- ;')(x)
. n

.1

= I all alii dLl(a).
·u

where a = c ilx and

J(a) = i

In particular,

e ('\d(fJ--- /,)(x). a E 10. II.

.1

0=/(1) - g(ti) = I aJ
1 dJ(a).

. n
j= L 2... n.

Then if P(a) is a polynomial of degree at most n - L

I/(t)- g(t)1 = 1.1
0

1

(all alii - P(a)) dL1(a) I

(5.1 )

But IJi(I)< I) e aXd(ifJl + Ij\)(x) < 1/11(00) + 1'1(00) and (i) follows. To
obtain (ii), we integrate (5.1) by parts:

I(l) - g(t)1 <II - P(I)[ ]L1( I),

.1

+ I I(t- a) h 1 all aI/ii 1 - P'(a)1 jL1(a)1 da.
'0

Given any polynomial Q(a) of degree at most n - 2. let
P(a) = (t - a) h-IJ~ Q(u) du + C, where C is chosen so that P(I) = l. Then
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we obtain li(t) - g(t)1 ~ It
follows. I

SIDI AND LUBINSKY

aLii 1 Q(a)lda and (ii)

First we obtain rates of convergence for interpolation at equally spaced
points with fixed stepsize.

THEOREM 5.2. Let fJ(.\') be of bounded {'anatlon in 10.::JJ I and
absolutely continuous li'ith respect to u(.\'). Let f(t) = .I IdfJl(t). Re(l) O.
Fix positit'e hand nonnegatit'e a. Lei t ll /= a I U [ )h. j c l. 2,,, II;

n = L 2.... Let fl1(t) be given by (4.4) so that (4.5) holds. /I L 2.... Then U'
q = (Re(t) a)/h > O.

J(t)/;,(t)1 =- O(n oil as II +::JJ .

Proof

and let 'I
Let z = (I a)/h so that q Re(z). Let I be the largest integer ,,,,if
z I. By Lemma 5.1 (i) and Theorem 4,1. we have

(J' P(o)

Now d'/da l 10" i = z(z I) 0" (;: 1+ [) a" IS bounded In O. II and further
belongs to Lip(q ~-l) in 10. 11. For. if 0 < (] 0' < 1 and a' 1.50. then

a" a' 'I (J _. a' I .~ 1I

2/; j 3),' I;.

while if 0 a a' < and 0 ' 1.50. then o'!a
and

t (). where 0 r).!'

(l + (»)"

k.

where K 'f I iU)!2] i and as q I l. Thus dl/do! :0'/ t~ Lip(q /)
By standard results (Rivlin 17. pp. 22-23 i).

mm 110' P(a)=, 0(11 'i)
l.kg(/') 11

as 11'::JJ (5,3 )

and the result now follows from (5.2) and (5.3). I

In the same way. one obtains:

THEOREM 5.3. Lei I(l) .I Idu I(l). Re(t)?;c O. Fix positil'c II Wlil

nonnegatin! a and let

tllj=a+U 1)11. J I. 2... 2n~ II =,. L 2,.,
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Let f,(t) be the exponential sum involving n exponents that interpolates to
rU) at t t"j' )=1,2... 2n, n=1,2.... Then if q=(Re(t)-a)/h>O.
I.At) -f,(t)I O(n-'I) as n-> 00.

LEMMA 5.4. Let z E satisfy Re(z) > O. Let d be real and a
nonnegative integer k be given. Then if

e,ccce min ilan~ld P(a)!I,.
, deg(P)~.n J"

lim sup e:,ill ~ p(z) = exp 1\ 1" log! z - x ! dx I
n.r '0 iZ+-x \

(5.4 )

\\'ilh equality (fIm(z) '* 0 or Re(z) > I.

Pro(?(. It is easy to modify the arguments in Cheney 11. pp. 194 _. 1961
from the real to the complex case to show that for complex /'. such that
Re(l') >-1./2.

Hence

min 110' _. P(a)ll, = (2Re(1') +- I)
lkg{P) n

II

I' II
i {I

Thus

I, n 'I' nz + d )t',,= (2n Re(z)+-2d+- 1) II
ill, nz t d +) + I .

n Ilogen =---(2n) Ilog(2nRe(z)+-2d+- I)

+ 11 I(log Inz + dl-log inz +- d +- n

I '\! I Z - U d)/nt 11 log -----;--- .
II I Z + (j + d)/n

k +- J )

(5.5)

If Im(z) '* 0 or Re(z) > I, the sum in (5.5) has the nature of a Riemann sum
of a function continuous in 10. 11 and in such a case. we see

,I I' ~ Y Ilim n I log e" = I log ,"-=-:.-. dx.
n-;'1, -II Z +X
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If Im(z) = 0 and 0 < z ::;:; 1, all terms in the sum in (5.5) are nonpositive and

we deduce that for any '7 > 0,

n I log 1'/1 ::;:; n I

/I "

\'

i I

I:: rJ (n"ft! c' '1

• i log I z- x I dx
'[O,I['oJ: 1].: t ,Ii i z j x

as n ---> 00. Using Lebesgue's Dominated Convergence Theorem. we can let
/7 ---> O. to deduce

z
lim sup 11

Il--->'J

I

I log 1'/1 ~ I log
.'() :

dx. I.

and the result follows. I

Different results concerning 1'/1' when:: is reaL may be found in 16!, The
following theorem gives rates of convergence for equidistant interpolation in
a fixed interval.

THEOREM 5.5. LeI /J(x) be of bounded l'arialioll ill [O.x I amI

absolutely continuous wilh respecl to u(x). LeI /(1) = J lei/JI(I). Re(1) 0
Fix positiL'e h alld nonllegalil'e a. LeI

Illi =c. at (j - I) bin. 1.2... 11:11 1.2

LeI ;~(I) be gil-en by (4.4) so Ihal (4.5) holds. 11 I. 2.... Theil gil'ell ! liIeli

Ihal Re(l) > a. Ire haL'e

lim sup I f(t) - ;;,(1) I III ::;:; p(z) "" 1.
n,," t.

where z = (I - a)/band p(z) is given by (5.4).

Proof By Lemma 5.1 (ii) and Theorem 4.1.

1/(1) - //I(t)!

::;:; (I fJi (00) + vi 1)(1 - a) nb min ,110 111
(1 'i1/o1 I_Q(o)III'

dcg«j)o(. "

If we use monotonicity of 11·111' in p. and Lemma 5.4. the result follows. I
For completely monotone functions. we have similarly:
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THEOREM 5.6. Let 1(t) = :!llda 1(1). Re(t) >O. Fix positive band
nonnegative a. Let

tn! a + (j - 1) b/(2n). j = 1. 2... 211; n = 1. 2.....

Let 11/(t) be the exponential sum involving 11 exponents that interpolates to
/,,(t) at t = tl/j ') 1. 2... 2n; n 1.2.... Then given t such that Re(l) > a. 11'('

have

n--+'{

where z = (t a)/b and p(z) is given by (5.4).

The above convergence rates improve those of Kammler 15. p. 5651 for
individual t.
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